To establish a corporate image trusted by the society
To promote management with energetic human resources
with a philosophy of mutual respect
To fulfill our corporate mission and contribute to the
development of the society

SATO KOGYO Co., Ltd.
Corporate Philosophy

Building
Building is about creating “spaces” that make living safe and
comfortable.
The basics for construction are that spaces are beautiful, efficient and
usable for many years to come.
At SATO KOGYO Co., Ltd., we always return to these basics, while exploring
and developing techniques, and carry out construction of a variety of uses with sincerity.

Civil Engineering
Civil Engineering is the building of a social infrastructure that supports industries
and people’s lifestyles.
The basics for civil engineering are to produce efficient, durable infrastructures
which take the environment and the economy into consideration.
At SATO KOGYO Co., Ltd., a lot of know-hows are reflected in our construction
plan from the fundamental research of the materials we use to the overall
structural efficiency and appearance of the projects.

Environment
Environmental affairs involve considering the future of our earth, fulfilling
responsibilities for conservation, and establishing proper waste management practices.
The basics for the environment are to strive for a symbiosis between man and nature.
At SATO KOGYO Co., Ltd., we propose and support people’s lifestyles to be at
their optimum level.

Overseas
Our advanced Japanese construction technologies are well-appraised overseas and
we have many achievements to attest them.
The basics of our overseas work is to respect the culture of each country and to
execute high quality construction to meet our customers’ needs.
SATO KOGYO Co., Ltd. currently has several large projects under construction
in different parts of the world.

We at Sato Kogyo highly appreciate your generous patronage and
support, without which we could not have achieved our success as a
general contractor since our firm’s establishment in 1862 at the dawn of
modern Japan.

Expounding on Sato Kogyo’s guiding corporate philosophy of “Total
Project Excellence”, we have strived in years past to enhance customer
satisfaction, build safe, secure and comfortable spaces and develop high-
quality social infrastructure. Going forward, we remain dedicated to placing
our customers’ interests first, responding to society’s needs, maintaining
excellence and being a good partner to high-tech service organizations.

We look forward to your continued support in the years ahead.

Masafumi Miyamoto, President, Representative Director
With the time,
With society,
We keep moving forward.

SATO KOYO Co., Ltd has its roots in Sato-Gumi and was founded by the founder, Sukekuro Sato, in Yanase, Toyama in 1862 and since then, we have been active and moving forward with our country.

Our first task during early period of Japan’s industrial development was the flood prevention work for the rivers which had often overflowed and mainly in Southeast Asia.

Since then, we have contributed to the establishment of the social infrastructure through various construction projects not only in Japan but also in foreign countries, and mainly in Southeast Asia.

Our aim is to protect people's quality of life and place the top priority on our customers’ satisfaction.

It is our pleasure to achieve such a contribution as a group of technicians. We will keep moving forward with the time and with society.
Building Works

Sato Kogyo has constructed many types of building in the world successfully. Such buildings include educational, cultural, entertainment, commercial retail, office, residential, healthcare, research & development, religious, manufacturing, cleanroom, pharmaceutical, semiconductor, aerospace, food & beverage and data centre facilities. Irrespective of the types of building, the fundamental purpose of any building is to be a "Vessel for People". Hence, buildings must be able to sustain the lifestyle, culture and characteristics of the occupants. Sato Kogyo’s philosophy is to always strive for excellence in design and construction, to fulfil the aspirations of the clients and building users as well as to care for the buildings by maintaining them in the best possible conditions throughout their lives.

Photo:Hiroyuki Hirai

MT FUJI WORLD HERITAGE CENTRE, SHIZUOKA (Shizuoka Prefecture)

Imizu city hall (Toyama Prefecture)

Hatsukaichi energy clean center (Hiroshima Prefecture)

SHOWA NOTE Takaoka Plant (Toyama Prefecture)

PMO Nihonbashi edo-dori (Tokyo Metropolitan)

TOA ROAD CORPORATION Headquarter Building (Tokyo Metropolitan)

Aichi Children’s Health and Medical Center emergency section (Aichi Prefecture)

Minamisoma Municipal General Hospital Stroke Center (Fukushima Prefecture)

Mt.FUJI WORLD HERITAGE CENTRE, SHIZUOKA (Shizuoka Prefecture)

Xabio Arena Sendai (Miyagi Prefecture)

National Center Hospital (Tokyo Metropolitan)

Hakodate Arena (Hokkaido Prefecture)

Sendai Children’s Hospital (Miyagi Prefecture)
Building Works
Now is the time to abandon the myth of ‘Build and Scrap’ and to construct quality buildings that can last for more than 100 years. The life of buildings are not only physically durable but are also flexible in layout to accommodate the changing needs and expectations of different era. Sato Kogyo’s objective is to provide quality living space with due consideration for the environment. We have the technology and expertise to design and construct quality buildings by tapping on our more than 150 years of experience throughout the value chain: from the inception and planning stage of the projects through their construction stage to the completed buildings’ long-term maintenance programmes.

RC Column-steel girder hybrid structure system “SHOPS Method (Satokogyo Hybrid Optimum-Structure)”

The aim of this method is to integrate a reinforced concrete column of high rigidity and high compression strength and steel girders of lightweight and high bending strength by a unique connection system. Concrete of \(F c=21 \) to 60 (N/mm²) and reinforcing bar of SD396 to SD490 can be used for the RC column. This method is effective for buildings having high floor height and wide column space, such as distribution center, other than applications for shopping center / office building. Precast members also can be applied for the columns.

Adoption of BIM

During design and construction stages, it is possible to handle three dimensional complicated shape, check interference among building elements, design consensus by VR, simulate actual construction process or fabricate components based on BIM data by adoption of BIM.

The method of control drying shrinkage

Shrinkage crack caused by drying of concrete affect durability and aesthetics of building. This technique was developed by cooperative research together with Hazama Ando Corporation, Kumagai Gumi, Tada Corporation, Nishimatsu Construction, Fuji Corporation and Maeda Corporation. In the course of development of this technique, it was verified how to control the concrete drying shrinkage from normal range to zero by full-scale specimen. This technique enable high value to the concrete by maintaining quality and aesthetics in long term.

Simple grout connection using fiber form

It is a method of Strengthening integrated earthquake resist using Steel Brace frame of RC Structure, SRC structure by bag-like fiber form. This can reduce cost, noise and vibration, and also shorten construction time because [Post-installed Anchor] is not necessary. Moreover, able to use the building even when the building is on construction.

Active noise control system

This is the noise reduction system by active noise control theory, which is the silencing method by generating over the opposite phase noise against undesired noise. Since noise generated by construction machine is lower range, it is difficult to reduce by conventional silencer, however, this system is able to reduce such noise efficiently in spite of its compact shape. This system was developed by cooperative research together with INC engineering.

SHRC SYSTEM

SHRC SYSTEM is the RC highrise residential building system which make use of the characteristics of RC structure such as stability against wind blow and low construction cost. The main structure frame like columns and beams are conventional RC structure (Only the balcony may is precast concrete), however, this system enable to shorten the construction time by utilization of high strength material and rationalization of construction method.

Base isolation retrofit method

Able to improve the seismic performance function of old building from the introduce of seismic isolation equipment on the existing building. Able to use the building even when the construction is being carried out.

The typical possessive technology

SHRC possessing structural control system

- **Column type vibration damper using low yielding stress steel**
- **Steel absorbs the seismic force and protects the building.**
- **Application of damage control design which considers absorption of seismic force enables to reduce columns and girder sections and save construction cost.**

Demolition method of super high chimney

- **It is the way to demolish super high steel chimney, like drop from base.**
- **Up to now there were many problems such as high cost for large crane, dangerous work on high place or even the workpiece flying away, but this problem is already improved, that the height for working place is less than 30m from ground.**

Noise and vibration monitoring system for construction site

- **This is a real time data measurement and display system for noise and vibration at construction site and it records compliance with specified limit values to minimize environment influence.**

Computational fluid dynamics simulation

- **This is the technique to forecast air flow, temperature or distribution of contaminant particles by computer simulation linked with BIM. It is able to correspond various issues such as settling of air-condition machines, travel distance of air flow or outdoor density diffusion.**

System operation status

This is the system to assess wind environment at building surrounding. It is able to estimate wind environment accurately by utilizing huge data base reflected by various wind tunnel test. This system is able to reduce the time and cost for analysis and to be utilized from planning to construction stage.
Civil Engineering Works

We, Sato Kogyo, have been serving the society in a wide range of infra-structure projects related to energy, roads and rails, dams, sanitation, land fill and marine. In the designing and construction of civil engineering structures, we always emphasize on function, durability, environment and aesthetic. We are able to achieve the desired quality and result because of our years of experience and our continuing research in methodology.

Road and railway

Energy+Industry

Sendai Municipal Subway Tozai Line Shinjuku Station}

Shinkansen, Shinkansen Station Viaduct (Toyama Prefecture)

Tokyo Metro Hanzomon line, Horio Section (Tokyo Metropolitan)

Kakonde Geothermal Power Station (Iwate Prefecture)

Tokyo Metro Fukutoshin line, Sannomiyah Station (Tokyo Metropolitan)

Otaki Solar Power Station (Chiba Prefecture)

Kakkonda Geothermal Power Station (Iwate Prefecture)

Hokuriku Shinbansha, Shinkansen Station Viaduct (Toyama Prefecture)

Sendai Municipal Subway Tozai Line Shinjuku Station (Miyagi Prefecture)

Tokyo Metro Fukutoshin line, Sannomiyah Station (Tokyo Metropolitan)

Kakonde Geothermal Power Station (Iwate Prefecture)

Otaki Solar Power Station (Chiba Prefecture)

The Kansai Electric Power, Pipeline nearby Nishi Umeda (Osaka Prefecture)

Kakkonda Geothermal Power Station (Iwate Prefecture)

Sendai Municipal Subway Tozai Line Shinjuku Station (Miyagi Prefecture)

Otaki Solar Power Station (Chiba Prefecture)

The Kansai Electric Power, Pipeline nearby Nishi Umeda (Osaka Prefecture)
Technology for Civil Engineering

Civil Engineering involves a wide range of technology in various disciplines. New technology taking account of environment and landscape has been developed for construction in order to increase capability of structure. Improvement of technology also has been done to increase efficiency of work towards "Work Style Reform".

Construction Technology for Tunnel considering economical and environmental aspects

Design and construction of super-large section tunnel with an inner section aspect ratio of 0.52

Kesennuma Tunnel No.2 is one of the largest cross section tunnel in Japan as its entrance of Iwate Pref. side has 3 traffic lane because of ramp. In the original design, this tunnel’s inner section aspect ratio y (= Inner height / Inner width) was 0.57 as construction parameter. However, if the tunnel cross section area could be reduced, it leads to not only the excavation volume and temporary support work, but also maintenance work in future. Therefore, we proposed to reduce the inner section aspect ratio and we put this design into execution. The ratio value y shall be finally decided to 0.52 by analysis of temporary support, lining and invert. By this engineering design, tunnel cross section area shall be reduced to 189m² from original design 202m². Cutting area for tunnel entrance could be also reduced. Our design and construction contributed to not only the reduction of construction and maintenance cost, but also landscape protection and environmental loading reduction by reduction of carbon dioxide due to construction and reduction of forest cutting area.

Build Meister™-tunnel package

Tunnel form management by laser scanner

Build Meister™ is the work progress control software which can find out the best solution for the concrete lining work. This software advises practical solution for the thickness of concrete lining by using the accurate analysis of as built shotcreted surface and excavated surface detail condition. And input 3-D Laser scanner surveyed information of the actual shotcreted surface before starting excavation work shall be displayed or output for understanding the shotcreted and excavated surface condition easier. These procedure by using this software is able to achieve approximately 80% of time saving compare with the former concrete lining construction procedure.

The typical possessive technology

Total blast system

The construction to excavation blast method at mountain tunnel becomes safer and faster due to the process development (Drilling, Marking, Expert, and Charing) of the entire system which is automation and labouring. It is also applicable to a large section road tunnel and underground power generator plant.

Enlargement of live line tunneling method

For tunnel in widening construction, this method is applicable to wide ranges of geological substances from hard rock to soft soil, as the movable blast method is introduced. It is possible to shorten construction period and to reduce construction cost while ensuring safe passage of other vehicles.

Tunnel JUDGement system of demolding time on site

This is a system to decide demolding time according to the variation of curing conditions by using a strength-estimation equation previously established from the monitoring strength development data of tunnel lining concrete based on the cumulative temperature of concrete and so on.

No grouting excavation for shield on launch and reach system

For departure and arrival of shield construction, it is a method of shield departure and arrival that can develop land at lower limit. This will install the manufactured gate at the open position of shield ahead launch and reach until the designated position under the water, in the first step of Canas method such as unringing.

Compact shield tunneling

Reinforcing integrated segment, which is attached 3/4 slot rings, is applied to this shield method. According to wheel transport system with invert gutter guide, rail facilities (such as rail, railbed, etc.) will be unnecessary. (Developed under the corporation of Tokyo underwater road)

Horizontal PC-block for dam inspection gallery

Installation desk, concrete placement including special construction techniques that are different from PC-block inspection gallery are unnecessary. Safety and construction is improved. This can save Construction time and cost due to less manpower.

A seismic design and reinforcement for power plant facilities

From our skillful experiences on design and seismic lab checks/inspection gallery on Seismic design for application of approval for nuclear power plant construction, the operation of design, earthquake resistant design, and reinforcement inspector from nuclear safety inspection agency and liquefaction flow analysis of water intake, drainage and tank of firepower (Fixing power, nuclear power plant) is implemented.

Measure against soil liquefaction by controlled blasting

This is a method that causes artificial liquefaction phenomena by controlled blasting in loose sandy soil under ground water level to compact the ground in extremely short time and increase the strength by making the soil particles denser in process of dissipation of increased water pressure.

Portable hit sound diagnostic device by AI

This is a newly fixed additional AI analysis device to Sato Kogyo’s Concrete Condition Assessment equipment “Portable hit sound diagnostic device” and ‘be able to perform the high level analysis (high clustering performance) of concrete. This High level device is able to analyse the other various function of construction data.

Rapid construction system in small section TBM

This TBM auto spray is the first system of the world that can perform excavation and lining simultaneously.

Dust collector integrated catenary bogie

For the production of tunnel, continuous belt conveyer system for handling the excavated material is a most popular method. However for the belt conveyer system requires the software for the maintenance and arrangement. Therefore, this system can improve the running safety and economize the maintenance work and the conveyer type handling mode to the middle size cross section tunnel construction.

Tunneling local area network system

It is a technology that considers Tunnel construction area as a part of network area, stabilizes the signal condition of control data rapidly, and able to retrieve input/output data in any areas, either underground or outside the pit.

Segment position retaining system [TKS]

This is a device to support the segment ring from the outer peripheral side immediately after assembling segments by extending inflatable bags installed in the tail fed by using compressed air. It retains the segment position and enables to transform the driving force of the shield machine to rear segments at the side of the natural ground in an unstable condition during assembling the segment in the shield tail.

Tunnel face forward geotechnical prediction system by inverse analysis using displacement measurements

This is a system to predict the geotechnical state of uncharted part less than 10m away from the shield toe by inverse analysis based on data of axial displacement and vertical displacement obtained by measurement of tunnel convergence on a routine basis.

Simple mixture technology of local exhausted material

Mix local exhausted material such as riverbed sand or excavated soil together with cement and water in order to make material for structure. Moreover, CSS small mixture is completely mixed type, and applicable to a wide range of purposes.

Installation method of long size reinforcing anchor bars by water jetting

This is a method to drill invert holes for reinforcing anchor bars by ejecuting high pressure water supplied by high water pressure machine throughout the drilling machine without damaging existing reinforcing bars.

Anti-seismic reinforcement for masonry retaining walls in narrow space

By the employing of the Newly developed movable uplift platform, micro drilling equipment and precisate cover plate, allow the implementation of the anti-seismic reinforcement work in train running day even through the clearance between Train and work location at existing wall is narrow.

Exhustion risk evaluation technology for concrete structure surface using non-contact acoustic imaging method

This is a technology to investigate the Rf and separation of the surface part of concrete structure by remote measuring and analyzing vibrational distribution on the concrete surface generated from Long Range Acoustic Device (LRAD) by utilizing Scanning Laser Doppler Vibrometry (SLDV).
Environmental Business

The corner stones in our effort to address environmental issues are “Use power of Nature”, “View Waste as Resource” and “Revisit Ancient Wisdom”. We at Sato Kogyo combine these corner stones with the state-of-the-art technologies to foster environmental technologies for a society where people can live comfortably and securely. Sato Kogyo has completed many environmental systems with these reliable technologies.

Measures for the environmental safeguard

Optimum heating control system for turf ground [SOLCON]

This is an automatic ground temperature control system which manages the proper temperature for growing turf grasses by means of hot/cold water passing through underground pipes so as to heat or cool the ground. The computer controls water communication by managing the weather information from sensors and the sunshine conditions that differ depending on sites of the field due to the stadium roof. It also takes into consideration the soil property that the ground is not warmed up quickly after it is heated. Following its introduction in Nissan Stadium, Kashima Soccer Stadium, and Ajinomoto Stadium, this system was introduced in Noevir Stadium Kobe in March 2018. We are also conducting research on turf growth in combination use of a supplemental lighting system using light-emitting diode (LED), which is to be expected in the future. Experiment on turf growth in combination use of LED irradiation.

Pipe Laid

Kurasawa Mega Solar Power Plant in Kikugawa City

Kashima Soccer Stadium in Ibaraki Prefecture

Optimum heating control system for turf ground

Measures for the recycling-based society

Volume reduction system of radioactively contaminated soil by classified-washing

This system applies the classified-washing technology for a heavy-metal contaminated soil to a radioactively contaminated soil. Clay minerals in soil with a small particle diameter are known to adsorb heavy metals strongly. This system can separate a clay fraction from gravel by washing the contaminated soil and can classify soil by particle diameter into the clay portion in which radioactive substances are concentrated and the relatively clean gravel, thereby can reduce volume of the contaminated soil. In the road sweeping and soil disposal work consigned by Fukushima Prefecture in 2015, we were able to pave the way for disposing contaminated soil safety on the designated waste scheme by the classified-washing treatment. This project received the Environment Award of the Japan Society of Civil Engineers as an environmental conservation project jointly addressed by industry, government, and academia with the understanding of local residents being secured. We will continue developing this technology for the use of volume reduction of the temporary stored contaminated soil, thereby to contribute to reconstruction of the affected area.

Volume reduction system of radioactively contaminated soil by classified-washing

Fermented and dried material

Solid fuel (SA-RPF)

Conversion system of sewage sludge into solid fuel

The conversion system of sewage sludge into soil fuel “SA-RPF method” is a technology to produce a new fuel by mixing and solidifying fermented and dried sewage sludge and waste plastics. It has a feature of reducing greenhouse gas emissions due to natural drying of sewage sludge using aerobic fermentation instead of fossil fuels in conventional technologies such as incineration. This technology has acquired a construction technology examination certificate of Japan Institute of Wastewater Engineering and Technology issued in 2012 fiscal year.

Conversion system of sewage sludge into solid fuel

Refuse Plastic & paper Fuel

Waste disposal

■ Landfill

Regarding the wastes, the proper final disposal is required along with promotion of recycling. Sato Kogyo has participated in management of a company established jointly with Kakuyama Kaihatsu Co., Ltd. of Hokusei Group based in Sapporo City to operate the first in the region controlled and least-controlled landfill sites in Esashi-cho, Hiyama-gun, Hokkaido. We will gain experience in project operations on top of our technologies developed in our past construction works.

■ Restoration of illegal waste dumping site / Disaster waste management

In treating the wastes, it is important to perform optimization through securing of the waste disposal route, selection and installation of the treatment method and facilities suited to the properties of the waste, environmental conservation measures during the work, coordination with concerned organizations and so on, in consideration of the circumstances of the surrounding areas for each project. At Sato Kogyo, based on our experiences and know-how through our illegal waste disposal dumping restoration projects and disaster waste disposal projects, we can offer proper and efficient solution plans.
Sato Kogyo has been very active in overseas market, particularly in South East Asia since the early 1970s. The Company has successfully completed numerous building and civil engineering projects, some of which are iconic, high profile landmarks. Sato Kogyo’s unique and sensitive approach has always been to understand and respect the customs, people, and social and business cultures of the countries which they are operating in as well as to proactively introduce innovative engineering solutions to build quality buildings and infrastructures. It has been an enriching, worldly experience for our staff in the overseas offices in the past decades and we are well positioned to undertake more and bigger projects in these dynamic economies.
Sukekuro Sato founds Sato Gumi at Yanase Village in Toyama Prefecture

Implemented flood prevention works on the 4 main rivers in Toyama Prefecture

Carried out construction of the Tokaido Line (between Numazu and Fuji)

Invited Dutchman Johannes de Rijk to major renovation works at the Joyogani River

Opened the Nagoya Branch

Abuilt Hongani Temple’s Toyama Betsuin which had been destroyed by fire

Completed Toyama City Hall

Reorganized and established Sato Kogyo Co., Ltd.

Opened the Tokyo Branch

Opened the Sapporo Branch, followed by the opening of branches at 9 power company locations

Designed and constructed Yotsuya Cooperas, the very first high-end apartment built in Japan

Achieved the tunnel digging speed record in Japan of 25.1 m/day during the winter season’s construction of the Kurube Tunnel

Publicly listed (Started OTC trading on the TSE. Listed on the 2nd section of the Tokyo, Osaka, and Nagoya stock exchanges in 1961) on the stock market (listed on the 1st section in 1962)

Opened the SATO Museum for the 100th anniversary

Developed a fully automated shield tunnel boring machine

Completed development of the “TM450GM,” Japan’s largest tunnel boring machine

Established the Central Technical Research Institute as a part of the company’s 110th year anniversary endeavors

Achieved Japan’s record for digging speed with the TBM of 62.18 m/day, 670 m/month during the construction of the 2nd Arakabe Tunnel (for the Tohoku Shinkansen bullet train)

Utilized the world’s largest tunnel boring machine (12.84 m) for the construction of Tohoku Shinkansen’s 2nd Ueno Tunnel

Completed construction of the Benjamin Sheares Bridge in Singapore

Completed the Georgian Terrace Project in Atlanta, Georgia, USA

Completed the first ever fixed roof "Ball Dome" in Japan

Opened line No. 2 of the Tokyo Metro Namboku Line’s Azabu section construction

Achieved Japan’s digging speed record of 260 m/month for a multi-track tunnel by using the NATM blasting method (Hokuriku Shinkansen’s Gorigamine Tunnel—Ueda project construction section)

Participated as the implementing body to open “Rhythm,” the first large-scale factory outlet in Japan & Concert Hall

Started in the solar power system business (Kikukawa City Kurasawa Mega Solar)

Concluded the first disaster relief agreement with Sendai city government (Provision of a sport plant equipment and hydraulic steel pipes had to be sent from the dam to the underground power plant approximately 10 km downstream, and Sato Kogyo was in charge of this area of 1,665 m, including two-thirds of the downstream area (and the digging work for an area of 1.150 m). Construction started in August 1959. The mouth of the Kurube Tunnel was located in the Sakurou Valley about 600 m above the Sanno River where the basic camp was located. Materials and food had to be sent up the sheer cliff by climbers until the tramway between the two points was constructed. In order to maintain the delivery time, the work had to continue during the winter. In December 1956, full-face excavation was carried out and on January 23, 1959, we established a Japanese digging record of 25.1 m/day. The tunnel broke through on February 8, and the center point difference was only 2.3 cm.

Yotsuya Cooperas

In the 20’s during the Showa era, there were few quality reinforced concrete housing complexes. Following the legal reform, we dared to enter into the private housing complex market where no one ever did.

In 1956, we completed “Yotsuya Cooperas,” the Japan’s first condominium type high-rise housing complex, was built by a private company. This is located in the high-end residential area of Yotsuya, Tokyo, in coordination with JCB, the Japan Credit Bank. “Cooperas” is a Japanese-born English word, meaning a cooperative house. It is not just a housing complex but residences based on discussions with tenants, the designer and the contractor covering the whole process from acquisition of land, design, and construction, and incorporating the individual life styles of the tenants. Since then, “Cooperas” has become synonymous with a housing complex.

Kurube Tunnel

Kurube Tunnel in the 4th construction area of the No.4 Kurube River power station. At the site, which is an important transport route, large-size equipment such as power plant equipment and construction materials had to be sent up the sheer cliff by climbers until the tramway between the two points was constructed. In order to maintain the delivery time, the work had to continue during the winter. In December 1956, full-face excavation was carried out and on January 23, 1959, we established a Japanese digging record of 25.1 m/day. The tunnel broke through on February 8, and the center point difference was only 2.3 cm.

Benjamin Sheares Bridge

First long bridge in Singapore connecting Changi Airport and downtown. For this project according to the international deal tender system consisting of the survey, design and construction, our bridge plan, using mainly pre-stressed concrete, was selected.

Construction started in January 1977 and was completed in September 1981.

In memory of the President Benjamin Sheares, who died during his period of service and before the completion, the bridge was named the Benjamin Sheares Bridge.

A $5 dollar coin and 50 dollar note were issued to mark the completion. The bridge has become well known as a national symbol worldwide. The Benjamin Sheares Bridge was praised for its construction technique and aesthetic design and won the Tanaka prize awarded by the Society of Civil Engineering in 1981.

 Completion of the Hakkoda Tunnel, the longest inland tunnel in the world in Ichinowatari

Achieved Japan’s digging speed record of 708 m/month with a TBM

Completed the first ever restoration of a historical civil engineering structure in Japan

Awarded the Japan Society of Civil Engineers’ “Tanaka Prize” for restoring the Momosuke Bridge,

Completed the first ever revolving roof “Ball Dome” in Japan

Sign up for the SATO Museum’s 105th anniversary event

Sakuroudani Lodging and Snap shot when Kurobe Tunnel was bored through

Reconstruction of Hongnji Temple’s Toyama Betsuin and the company badge of the SATO KOGYO Co., Ltd.

In 1892, Toyama city suffers from a massive fire, and Nishi Honganji Temple’s Toyama Betsuin was also on fire.

Betsuin at the time was getting ready for the 400th anniversary of Rennyo-shounin’s death, but such was considered not possible due to the damage caused by the massive fire. However, Sukekuro Sato, the founder of Sato Kogyo, decided to reconstruct Betsuin itself. Supervising the reconstruction work personally, the Betsuin project was completed in just over a month. Moreover, he donated the total construction price.

The anniversary ceremony was performed successfully. The following year, Rennyo-shounin visited Sato’s residence and placed the Japanese half-coat-of-arms with the “Sagari-fuji” symbol over Sukekuro’s shoulders to express his appreciation for the reconstruction work.

After Sukekuro’s death, Sukekuro II added the Chinese character “Hei” to the symbol and started using it as the company’s logo.

Toll bridges and the Satasui Bridge II

The founder, Sukekuro Sato, came up with the idea of something quite similar to the current PFI (Private Finance Initiative) more than 100 years ago and built many private toll bridges, “Chintoribaih”, over the rivers in Hokuriku, the northern part of Japan, which made people’s lives more convenient.

The Satasui Bridge over the Jinzu River (Toyama pref.) was also built by Sukekuro and converted into a toll bridge.

The first Satasui Bridge was destroyed by runoff from melting snow and it had been considered impossible to rebuild it due to both technical and financial difficulties. However, in 1860, at the request of the prefectural government, Sato Kogyo attempted to rebuild the bridge using the platform method at his own expense.

This method has now evolved to become the Caisson method, and the upper part of the bridge was built in a truss shape and was the longest span in Japan at that time.